Effect of acute lung injury on structure and function of pulmonary surfactant films.
نویسندگان
چکیده
The structural and functional alterations in pulmonary surfactant that occur during acute lung injury were studied using rat lung surfactant large aggregates (LA) isolated from normal nonventilated lungs (N), and from standard ventilated (V) and injuriously ventilated (IV) excised lungs. N lungs inflated significantly better than IV lungs, with V lungs intermediate. Although IV LA phosphatidylcholine levels were unchanged, cholesterol and protein were elevated. V LA exhibited PC/cholesterol and PC/protein ratios intermediate between N and IV. In contrast to total cholesterol and protein levels, these ratios were not significantly different from IV LA. N and V LA, but not IV LA, adsorbed rapidly and were able to generate surface pressures (pi) near 70 mN/m during surface area reduction at 37 degrees C on a captive bubble tensiometer. Langmuir-Wilhelmy surface balance studies at 23 degrees C showed N LA films consistently attained pi approaching 70 mN/m during ten compression-expansion cycles. IV films were less effective and failed to achieve high pi consistently after the sixth cycle. V films were intermediate. Epifluorescence studies revealed compression of adsorbed N LA films formed well-defined liquid-condensed (LC) domains, but fewer, smaller domains were observed with IV films and, to a lesser extent, V films. Atomic force microscopy on Langmuir-Blodgett N films transferred at pi = 30 mN/m showed high, well-defined LC domains. IV films showed thinner, intermediate height, possibly fluid domains, which contain large numbers of small higher domains with heights corresponding to LC domains. V films were intermediate. We conclude that acute lung injury induced by hyperventilation, and to a lesser extent standard ventilation, of excised lungs alters surfactant surface activity and the ability of natural surfactant to form surface structures at the air-water interface.
منابع مشابه
Effects of cardiopulmonary bypass on lung nuclear factor-kappa B activity, cytokine release, and pulmonary function in dogs
Objective(s): To study the effect of cardiopulmonary bypass (CPB) on nuclear factor-kappa B (NF-кB) and cytokine expression and pulmonary function in dogs. Materials and Methods: Twelve male mongrel dogs were divided into a methylprednisolone group (group M) and a control group (group C). All animals underwent aortic and right atrial catheterization under general anesthesia. Changes in pulmonar...
متن کاملp-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress
Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...
متن کاملEffect of Lung Recruitment Maneuver in Children with Acute Lung Injury
Background Acute lung injury (ALI) is defined as PaO2/FiO2 less than 300 with bilateral pulmonary infiltrates, without pressure is the top of the left atrium. Early diagnosis and treatment of pediatric ALI and find new cases is very important. Accurate diagnosis and effective steps to treating these patients is essential in the outcome of ALI. This study was conducted to show the impact of recr...
متن کاملThe protective effect of infliximab against carbon tetrachloride-induced acute lung injury
Objective(s): Carbon tetrachloride (CCl4) causes pulmonary toxicity. Infliximab (Ib) is a potent inhibitor of tumor necrosis factor-alpha (TNF-α). We aimed to investigate whether Ib has a protective effect on CCl4 induced lung injury. Materials and Methods:Rats were divided into control, CCl4, and CCl4+Ib groups. A single dose of 2 ml/kg CCI4 was administered to CCI4 group and a single dose of...
متن کاملAerosolised surfactant generated by a novel noninvasive apparatus reduced acute lung injury in rats
INTRODUCTION Exogenous surfactant has been explored as a potential therapy for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In the present study, a nebuliser driven by oxygen lines found in the hospital was developed to deliver aerosolised porcine pulmonary surfactant (PPS). We hypothesised that aerosolised surfactant inhaled through spontaneous breathing may effectiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 30 5 شماره
صفحات -
تاریخ انتشار 2004